452 research outputs found

    Latent sentiment model for weakly-supervised cross-lingual sentiment classification

    No full text
    In this paper, we present a novel weakly-supervised method for crosslingual sentiment analysis. In specific, we propose a latent sentiment model (LSM) based on latent Dirichlet allocation where sentiment labels are considered as topics. Prior information extracted from English sentiment lexicons through machine translation are incorporated into LSM model learning, where preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. An efficient parameter estimation procedure using variational Bayes is presented. Experimental results on the Chinese product reviews show that the weakly-supervised LSM model performs comparably to supervised classifiers such as Support vector Machines with an average of 81% accuracy achieved over a total of 5484 review documents. Moreover, starting with a generic sentiment lexicon, the LSM model is able to extract highly domainspecific polarity words from text

    A hybrid generative/discriminative framework to train a semantic parser from an un-annotated corpus

    Get PDF
    We propose a hybrid generative/discriminative framework for semantic parsing which combines the hidden vector state (HVS) model and the hidden Markov support vector machines (HMSVMs). The HVS model is an extension of the basic discrete Markov model in which context is encoded as a stack-oriented state vector. The HM-SVMs combine the advantages of the hidden Markov models and the support vector machines. By employing a modified K-means clustering method, a small set of most representative sentences can be automatically selected from an un-annotated corpus. These sentences together with their abstract annotations are used to train an HVS model which could be subsequently applied on the whole corpus to generate semantic parsing results. The most confident semantic parsing results are selected to generate a fully-annotated corpus which is used to train the HM-SVMs. The proposed framework has been tested on the DARPA Communicator Data. Experimental results show that an improvement over the baseline HVS parser has been observed using the hybrid framework. When compared with the HM-SVMs trained from the fully annotated corpus, the hybrid framework gave a comparable performance with only a small set of lightly annotated sentences

    Robustness issues in a data-driven spoken language understanding system

    Get PDF
    Robustness is a key requirement in spoken language understanding (SLU) systems. Human speech is often ungrammatical and ill-formed, and there will frequently be a mismatch between training and test data. This paper discusses robustness and adaptation issues in a statistically-based SLU system which is entirely data-driven. To test robustness, the system has been tested on data from the Air Travel Information Service (ATIS) domain which has been artificially corrupted with varying levels of additive noise. Although the speech recognition performance degraded steadily, the system did not fail catastrophically. Indeed, the rate at which the end-to-end performance of the complete system degraded was significantly slower than that of the actual recognition component. In a second set of experiments, the ability to rapidly adapt the core understanding component of the system to a different application within the same broad domain has been tested. Using only a small amount of training data, experiments have shown that a semantic parser based on the Hidden Vector State (HVS) model originally trained on the ATIS corpus can be straightforwardly adapted to the somewhat different DARPA Communicator task using standard adaptation algorithms. The paper concludes by suggesting that the results presented provide initial support to the claim that an SLU system which is statistically-based and trained entirely from data is intrinsically robust and can be readily adapted to new applications

    A comparative study of Bayesian models for unsupervised sentiment detection

    No full text
    This paper presents a comparative study of three closely related Bayesian models for unsupervised document level sentiment classification, namely, the latent sentiment model (LSM), the joint sentimenttopic (JST) model, and the Reverse-JST model. Extensive experiments have been conducted on two corpora, the movie review dataset and the multi-domain sentiment dataset. It has been found that while all the three models achieve either better or comparable performance on these two corpora when compared to the existing unsupervised sentiment classification approaches, both JST and Reverse-JST are able to extract sentiment-oriented topics. In addition, Reverse-JST always performs worse than JST suggesting that the JST model is more appropriate for joint sentiment topic detection

    Automatically extracting polarity-bearing topics for cross-domain sentiment classification

    Get PDF
    Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning

    Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold

    Get PDF
    Sentiment analysis over Twitter offers organisations and individuals a fast and effective way to monitor the publics' feelings towards them and their competitors. To assess the performance of sentiment analysis methods over Twitter a small set of evaluation datasets have been released in the last few years. In this paper we present an overview of eight publicly available and manually annotated evaluation datasets for Twitter sentiment analysis. Based on this review, we show that a common limitation of most of these datasets, when assessing sentiment analysis at target (entity) level, is the lack of distinctive sentiment annotations among the tweets and the entities contained in them. For example, the tweet "I love iPhone, but I hate iPad" can be annotated with a mixed sentiment label, but the entity iPhone within this tweet should be annotated with a positive sentiment label. Aiming to overcome this limitation, and to complement current evaluation datasets, we present STS-Gold, a new evaluation dataset where tweets and targets (entities) are annotated individually and therefore may present different sentiment labels. This paper also provides a comparative study of the various datasets along several dimensions including: total number of tweets, vocabulary size and sparsity. We also investigate the pair-wise correlation among these dimensions as well as their correlations to the sentiment classification performance on different datasets
    corecore